
Kerrighed Summit, Paris, France, 2007

Container Checkpointing

John Mehnert-Spahn

University of Duesseldorf

Germany

Kerrighed Summit, Paris, France, 2007

 Introduction – where do we want to go?

 Containers & Ghosts

 Container Checkpointing

Overview

Kerrighed Summit, Paris, France, 2007

Checkpointing in XtreemOS

 Kernel Checkpointer: saving states of nodes and Kerrighed clusters

 System Checkpointer: periodic incremental chkp. & garbage collection

 Grid Checkpointer: scalable hierarchical chkp., failure detection & recovery

Kernel
Ckpter

Grid Checkpointer

System
Checkpointer

System
Checkpointer

Grid
Application

Application
Unit

Process

WP3.3

WP2.1

WP2.1 WP2.2

Kerrighed Summit, Paris, France, 2007

Checkpointing in Kerrighed

belongs to WP2.2 of XtreemOS

Kernel Checkpointer: saving state of a process
– shared memory: UDUS

– open files and network communication: IRISA

System Checkpointer:
– WP2.1 code will be extended

– a cluster appears as a single grid node

– LinuxSSI/Kerrighed manages periodic checkpointing, failure
detection and recovery of a cluster in interaction with the grid
Checkpointer

Kerrighed Summit, Paris, France, 2007

UDUS‘ research perspective

WP2.2: container-based checkpointing in Kerrighed
– simplified checkpointing of different resources

– ghosts for saving & restoring kernel states

– checkpointing strategies for large scale clusters

WP3.3: grid-level checkpointing & recovery strategies
– adaptive strategies (coordinated versus independent ones)

– hierarchical approaches for applications spanning

multiple clusters (interaction of Kerrighed System

Checkpointer and Grid Checkpointer)

– hetereogenous environments (mobile, PC, clusters)

Kerrighed Summit, Paris, France, 2007

Containers

Containers: for sharing data objects cluster wide
– transparent access to remote data

– MESI-like protocol for consistency

– building block for Single System Image

Linkers
– Defines the type of objects to be managed by the linked

container

– Interface between containers and host OS resources

– For memory, network streams, files, ...

Kerrighed Summit, Paris, France, 2007

Ghosts

Ghosts: for process migration
– handle kernel data structures of a process

– dynamically interweaving containers for resources of a process

task_struct

Mm

Mm_struct

mmap

Vm_area_struc
t

mmap_cache

File_struc
t

File_fd

File

File *fd_array

files
Vm_end
Vm_file

Vm_end
Vm_file

Vm_start

Vm_start

Pid

p_ysptr

task_struct

Pid

task_struct

Pid

p_pptr

Tty

Physical pagesMemory image

Text

Data

Pile

Dentry
Inode

d_inode

d_inode

d_inode

Socket
i_pipe

Socket
i_pipe

Socket
i_pipe

File

NIC

Container

Container

Container

KerNet Pipe

KerNet Socket

Kerrighed Summit, Paris, France, 2007

Container Checkpointing

 coordinated checkpointing approach
(synchronize processes, start checkpointing, resume work)

 what can happen within synch phase (yellow bar) in Kerrighed?

– Case 1: change of ownership
(grab page request, page eviction to a remote node)

– Case 2: swapping pages to local disk

Kerrighed Summit, Paris, France, 2007

Container Locking

Kerrighed Summit, Paris, France, 2007

Case 1: Change of ownership

 caused by:
– application unit B, stopped after application unit A
– Message(s) in transfer

 risk: owner object can be left without saving it
– owner object is not sent immediately after grab to

requesting node
– might be forgotten to save on requesting node ...

• ... if object arrival follows decision which data to be saved
has already been made

=> consistency issue

Kerrighed Summit, Paris, France, 2007

Case 2

 I/O operation required to retrieve objects from disk
during the checkpointing operation

Does not cause faults but a performance issue

Kerrighed Summit, Paris, France, 2007

 solution: insert new state into state machine
 define that ownership changes and evictions must NOT be

executed within new state – block requests
 approach: “An efficient and scalable approach for implementing

fault-tolerance DSM architectures“ (Morin,Kermarrec,
Banatre, Gefflaut)

• Extended Coherence Protocol (Precommit, Shared-CK, Inv-CK)

• recovery data in memory, use for computation

 PRO: solves case 1 and case 2
 new state ensures “undisturbed” synch phase
 if extended: use replica data for computation

 CON: implementation; performance overhead
 state machine modification

Realising CP – Approach I

Kerrighed Summit, Paris, France, 2007

Realising CP – Approach II A

 Idea: stop senders and wait until container event queue is empty

 avoid impact of container protocol actions on objects on the recipient
side

 wait until container event queue gets empty

 PRO: no modification to state machine

 CON: at what time will queue be empty?
 not all processes, that could send container msg's can be
 stopped, otherwise system halts
 => queue is not guaranteed to be empty

Kerrighed Summit, Paris, France, 2007

Realising CP – Approach II B

 solution: avoid impact of protocol actions on sender side

 do not send protocol actions for certain containers

 realisation:
– stop processes using signals (SIGSTOP, SIGCONT)

– wrapper for protocol actions – do not block all containers

– export objects

– create disk structure (page data & meta data for recovery)

 PRO: solves case 1 and case 2
 no modification of state machine

Kerrighed Summit, Paris, France, 2007

Conclusion

 Container code is complex

 Still a lot of work ahead

