
Virtualization
for

Kerrighed?

February 1st 2008
Kerrighed Summit, Paris

Erich Focht
NEC



© NEC Deutschland GmbH 20082

Why virtualization?

“Virtualization” means many things!

Multi-programming
any UNIX is virtualizing resources to allow their sharing

Resource sharing
CPU, memory, disks, devices

Machine partitioning
illusion of several machines running on same hardware
mainframes in '60s - '90s, ISPs and virtual desktops today

Resource isolation
protect data from other users
protect from failures and faults
separate networks from each other



© NEC Deutschland GmbH 20083

Why virtualization?

Quality of Service
assigned memory, I/O bandwidth, fairness of scheduling

Simulation and Emulation:
simulate different CPU and different hardware (devices)
testing, development, hardware, firmware
Example: old/new hardware, old/new software

A quote from 1974: [R. Goldberg, Survey of Virtual Machines 
Research]

"Virtual machine systems were originally developed to correct 
some of the shortcomings of the typical third generation 
architectures and multi-programming operating systems - e.g., 
OS/360."



© NEC Deutschland GmbH 20084

Why virtualization?

Resource joining
I/O virtualization:

many disks merged to one big virtual file space
user doesn't need to care of where his files are
admin can grow file space according to needs

Single System Image:
many machines joined to look like one single bigger 
machine
more resources
simpler management

Grid Computing:
join resources of many machines and allow to share them 
in easy way



© NEC Deutschland GmbH 20085

Approaches

Hardware Emulation
emulate/simulate different CPU than underlying hardware

accuracy level, latencies, cache behavior, ...

Examples:
SimOS, Simics,
Bochs, QEMU, MAME (Multi-Arcade Machine Emulator :-)

boot unmodified OS on virtual hardware!

slow :-(

Physical Hardware

Primary OS

Hardware VM

Guest OS

App App



© NEC Deutschland GmbH 20086

Approaches

Instruction set virtualization (at CPU level (mostly))
binary translation of virtual CPU instructions to 
instructions of host (physical) CPU

Transmeta: X86 to VLIW on-the-fly instruction conversion

dynamic recompilation (QEMU?)

Processor virtualization (at application level)
Programming language virtual machine

Pseudo-code, P-code, Byte-code
run on virtual CPU, with virtual instruction set
Pascal, BCPL, (concept used in compilers for intermediate 
language (RTL)), .NET, Parrot
Java, JVM



© NEC Deutschland GmbH 20087

Approaches

API/ABI Emulation
create execution environment that help run programs for 
other OS (of same hardware)

SUN WABI, lxrun (SCO UNIX),
(MACH emulation library - Mikrokernels)
WINE

Physical Hardware

Primary OS

virtual OS
API emulation

Application



© NEC Deutschland GmbH 20088

Approaches
Full (native) virtualization

Hypervisor, VMM (virtual machine monitor)
mediates between virtual machines and hardware
unmodified guest OS
CPU needs native support for virtualization

remark is particularly important for x86

z/VM, Vmware, Xen, KVM, Virtualbox (+emulation)
performance: slower than native

catch faults
traps, tracing

Physical Hardware

VMM

unmodified
guest OS

Applications

unmodified
guest OS

Applications



© NEC Deutschland GmbH 20089

Approaches

Paravirtualization
Hypervisor, VMM (virtual machine monitor)

mediates between virtual machines and hardware
guest OS is virtualization aware
performance: almost as fast as native, better than full 
virtualization
Xen, UML, lguest, VMware

Physical Hardware

VMM

guest OS

Application

guest OS

Application

virt virt



© NEC Deutschland GmbH 200810

Approaches

OS-level virtualization
isolates independent “servers” from each other

run in one instance of operating system
Vserver, Viruozzo, OpenVZ, (chroot)
Solaris containers, FreeBSD jails, Linux containers

Physical Hardware

Host OS

isolated, virtualized
resources

App App App

isolated, virtualized
resources

App App App



© NEC Deutschland GmbH 200811

Approaches

OS-level virtualization
isolates independent “servers” from each other

run in one instance of operating system
Vserver, Viruozzo, OpenVZ, (chroot)
Solaris containers, FreeBSD jails, Linux containers

Physical Hardware

Host Operating System

isolated, virtualized
resources

App App App

isolated, virtualized
resources

App App App

Linux containers
resource hierarchy
isolation
QoS
name spaces (PID, uname, mounts)
migration, checkpoint

but only across nodes with exactly same OS!



© NEC Deutschland GmbH 200812

Approaches

Single System Image
modified OS instances cooperate to provide distributed 
services

applications can use distributed services with a “virtual 
SMP” feeling

Physical Hardware

modified
OS

virtual SMP view: PIDs, distributed objects, migration

App App AppApp

Physical Hardware Physical Hardware

modified
OS

modified
OS



© NEC Deutschland GmbH 200813

Approaches

virtual SMP hardware
VMM layer as firmware

provides SMP hardware view

unmodified SMP OS

ScaleMP (commercial product)

Physical Hardware

unmodified SMP OS

App App AppApp

Physical Hardware Physical Hardware

VMM VMM VMM

Virtual Hardware



© NEC Deutschland GmbH 200814

Virtualization in Kerrighed?

Containers!
Why?

resource isolation & grouping, QoS
merged, so people will use it!

new scheduler
per container memory accounting

resource virtualization (PID, UID, network namespaces)

How?
container restricted to one node (easiest)
migrate entire containers

people want this, actually (on normal, non-SSI systems)
Application: virtual servers

in SSI: container resources distributed across nodes?
does this make sense?



© NEC Deutschland GmbH 200815

Virtualization in Kerrighed?

Containers!
resource virtualization: PID

namespaces: global, per container, hierarchical
Kernel should never use PIDs
much code rewritten to eliminate numeric PIDs from Kernel

Kerrighed: global PIDs
some bits used for initial node identification

Can we adapt PID virtualization/namespaces to 
Kerrighed?

remove usage of numeric PIDs
use task_struct and PID structure instead
add additional namespace level for global Kerrighed view?



© NEC Deutschland GmbH 200816

Virtualization in Kerrighed?

PID namespaces

node global pid_namespace

container 1 pid_namespace

container 2 pid_namespace

init

init in ctnr 1 namespace

init in ctnr 2 namespace



© NEC Deutschland GmbH 200817

Virtualization in Kerrighed?
PID namespaces

node 1 pid_namespace

container 1 pid_namespace

container 2 pid_namespace

Kerrighed glbl 
pid_namespace

node 2 pid_namespace

container 3 pid_namespace

container 4 pid_namespace

Kerrighed glbl 
pid_namespace



© NEC Deutschland GmbH 200818

Virtualization...

PID approach is usable for other namespaces, too
UID

do we care?

SYSV IPC (shm key IDs)
solves some problems with checkpoint/restart/migration

network
make containers migrateable
processes see same network setup
solves some problems that Kerrighed also has solved

filesystem view
mount points, no need for additional effort

utsname
good for us, no need for additional effort (same name per cluster?)



© NEC Deutschland GmbH 200819

Other stuff...

control groups
memory!

important for isolation and QoS
AFAIK, done by detailed accounting
per node, yet another argument for not distributing 
containers
... per container swap & container checkpoint

CPU
uninteresting if containers are restricted to one node

Disk I/O, network I/O
no need for attention so far


